Justify each of the following statements using a definition, theorem, or postulate.

- **1.** If $\angle D \cong \angle E$, then $m\angle D = m\angle E$ ______
- **2.** If $m \angle 1 + m \angle 2 = 90^{\circ}$, then $\angle 1$ and $\angle 2$ are complementary_____
- **3.** If $\angle P$ and $\angle Q$ are supplementary angles, then $m\angle P + m\angle Q = 180^{\circ}$
- **4.** If $m \angle JKL = 90^{\circ}$, then $\angle JKL$ is a right angle.
- **5.** If $\angle 3$ and $\angle 4$ are vertical angles then $\angle 3 \cong \angle 4$
- **6.** If $\angle A$ and $\angle B$ are right angles, then $\angle A \cong \angle B$
- 7. If $\angle X$ and $\angle Y$ form a linear pair, then $\angle X$ and $\angle Y$ are supplementary.

Complete the proofs below by filling in the missing statements and reasons.

8. Given: $\angle 1$ and $\angle 2$ form linear pair; $\angle 1$ and $\angle 3$ are supplementary

Prove: $\angle 2 \cong \angle 3$

Statements	Reasons
1. ∠1 and ∠2 form linear pair	
2. ∠1 and ∠2 are supplementary	
3. $m \angle 1 + m \angle 2 = 180^{\circ}$	
4. ∠1 and ∠3 are supplementary	
5. $m \angle 1 + m \angle 3 = 180^{\circ}$	
6. $m \angle 1 + m \angle 2 = m \angle 1 + m \angle 3$	
7. <i>m</i> ∠2 = <i>m</i> ∠3	
8. ∠2 ≅ ∠3	

9. Given: \overrightarrow{KM} bisects $\angle JKL$ Prove: $m\angle MKL = \frac{1}{2}m\angle JKL$

Statements	Reasons
1. KM bisects ∠JKL	
$2. \angle JKM \cong \angle MKL$	
3. $m \angle JKM = m \angle MKL$	
$4. m \angle JKM + m \angle MKL = m \angle JKL$	
5. $m \angle MKL + m \angle MKL = m \angle JKL$	
6. $2m \angle MKL = m \angle JKL$	
7. $m \angle MKL = \frac{1}{2}m \angle JKL$	

10. Given: $\overrightarrow{BD} \perp \overrightarrow{BC}$; $\angle ABD \cong \angle DBE$ **Prove:** $\angle ABD$ and $\angle EBC$ are complementary

Statements	Reasons
1. $\overrightarrow{BD} \perp \overrightarrow{BC}$	
2. ∠DBC is a right angle	
$3. m \angle DBC = 90$	
4. $m \angle DBE + m \angle EBC = m \angle DBC$	
$5. m \angle DBE + m \angle EBC = 90$	
6. ∠ <i>ABD</i> ≅ ∠ <i>DBE</i>	
7. $m \angle ABD = m \angle DBE$	
$8. m \angle ABD + m \angle EBC = 90$	
9. ∠ABD and ∠EBC are complementary	