Date: \qquad Period: \qquad

4.1-4.2 Review

Graph the following functions. State the vertex, AOS, domain, range, max/min, and transformations.

1. $y=\frac{1}{2}(x-2)^{2}+3$
2. $y=(x+2)^{2}-1$
3. $f(x)=-4(x-3)^{2}+2$

Graph the following functions. State the vertex, AOS, domain, range, max/min, and the y-intercept.
4. $f(x)=x^{2}-4 x+1$
5. $f(x)=-x^{2}+6 x-10$
6. $f(x)=3 x^{2}-8 x$

Write a quadratic model to function each graph.
7.

8.

Write each function in vertex form.
9. $y=x^{2}-8 x+19$
10. $y=2 x^{2}-12 x+11$
11. $y=-\frac{1}{2} x^{2}-3 x+3$
12. A small independent motion picture company determines the profit P for producing n DVD copies of a recent release is $P=-0.02 n^{2}+3.40 n-16$. P is the profit in thousands of dollars and n is in thousands of units.
a. How many DVDs should the company produce to maximize the profit?
b. What will the maximize profit be?
13. A local nursery sells a large number of ornamental trees every year. The owners have determined the cost per tree C for buying and caring for each tree before it is sold is $C=0.001 n^{2}-0.3 n+50$. In this function, C is the cost per tree in dollars and n is the number of trees in stock.
a. How many trees will minimize the cost per tree?
b. What will the minimum cost per tree be?
14. Jason jumped off a cliff into the ocean in Acapulco while vacationing with some friends. His height as a function of time could be modeled by the function $h(t)=-16 t^{2}+16 t+480$, where t is the time in seconds and h is the height in feet.
a. How long did it take Jason to reach his maximum height?
b. What was the highest point that Jason reached?

