4.3 Practice Worksheet

For problems 1-4, find an equation in standard form of the parabola passing through the given points.

1. $(-1,2),(1,8),(-3,4)$
2. $(-1,4),(2,5),(4,9)$
3. $(-1,3),(1,-11),(8,3)$

For problems 5-7, solve the provided word problems.
4. Tommy throws a ball off the top of a building and Allie records the height of the ball at different times, shown in the table.
a. Find a quadratic model for the data.
b. Use the model to estimate the height of the ball at 2.5 seconds.
c. What is the ball's maximum height?

Time	Height (ft)
0	50
1	68
2	54
3	8

5. The table gives the number of scuba dive trips sold at a tropical resort.
a. Find a quadratic model for the data, using April as month 1, May as month 2,

Month	Scuba Trips
April	36
May	52
June	84

6. On a suspension bridge, the roadway is hung from cables hanging between support towers. The cable of one bridge is in the shape of a parabola $y=0.1 x^{2}-6 x+110$, where y is the height in feet of the cable above the roadway at the distance, x feet from a support tower.
a. What is the closest the cable comes to the roadway?
b. How far from the support tower did this occur?
7. Abigail wants to build a fence around a rectangular area for a garden. She has 150 feet of fencing and she wants to leave a 10 -foot opening on one side for a gate. In order to make the area of the garden a maximum, what should the dimensions of the garden be?
