4.3 Practice Worksheet

For problems 1-4, find an equation in standard form of the parabola passing through the given points.

1.
$$(-1,2),(1,8),(-3,4)$$

$$Q(-1)^{2}+b(-1)+c=2 > |Q-1b+c=2|$$

$$Q(1)^{2}+b(1)+c=8 > |Q-1b+c=8|$$

$$Q(-3)^{2}+b(-3)+c=4 > |Q-3b+c=4|$$

$$Q(-3)^{2}+b(-3)+c=4 > |Q-3b+c=4|$$

$$Q(-3)^{2}+b(-3)+c=4 > |Q-3b+c=4|$$

$$Q(-3)^{2}+b(-3)+c=4 > |Q-3b+c=4|$$

$$y = \frac{1}{3}x^2 + \frac{11}{3}$$

$$A(-1)^{2}+b(-1)+c=3$$
 $7a-b+c=3$ $1-1$ $1=1$ 3 $rref$ $100 | 17$ $a(8)^{2}+b(8)+c=3$ $b4a+8b+c=3$ $b4a+6b+c=3$ $b4a+6b+$

For problems 5-7, solve the provided word problems.

- 4. Tommy throws a ball off the top of a building and Allie records the height of the ball at different times, shown in the table.
- a. Find a quadratic model for the data.

b. Use the model to estimate the height of the ball at 2.5 seconds.

c. What is the ball's maximum height?

Time	Height (ft)
0	50
	68
2	54
3	8

- 6. The table gives the number of scuba dive trips sold at a tropical resort.
- a. Find a quadratic model for the data, using April as month 1, May as month 2,

4	=	8×	² -8	×	+	36
0			1	4	No.	00

b. Use the model to predict the number of scuba dive trips sold in August.

8(5)2	-8(5)	+36
	196	trips

Month	Scuba Trips
April	36
2 May	52
3 June	84
	

- 7. On a suspension bridge, the roadway is hung from cables hanging between support towers. The cable of one bridge is in the shape of a parabola $y = 0.1x^2 6x + 110$, where y is the height in feet of the cable above the roadway at the distance, x feet from a support tower.
- a. What is the closest the cable comes to the roadway?

b. How far from the support tower did this occur?

$$\frac{10}{a(.1)} = 30$$
 y = N+ for $\frac{10}{a(.1)} = 30$ $y = N+ for a(.1)$

8. Abigail wants to build a fence around a rectangular area for a garden. She has 150 feet of fencing and she wants to leave a 10-foot opening on one side for a gate. In order to make the area of the garden a maximum, what should the dimensions of the garden be?

P:
$$3x + 3y - 10 = 150$$

 $3x + 3y = 160$
 $x + y = 80$
 $y = 80 - x$

$$A = -x^{3} + 80x$$

$$\frac{-80}{2(-1)} = 40$$

$$40 \text{ by } 40$$