The Fundamental Theorem of Algebra	If $P(x)$ is a polynomial of degree $n \ge 1$, then $P(x) = 0$ has exactly n roots, including multiple and complex roots.
	Example: $P(x) = 3x^3 - 2x + 3$ is a polynomial of degree 3, so $P(x) = 0$ has 3 roots.
Using the Fundamental Theorem	1. Write the polynomial in standard form. 2. Find the list of possible rational roots. 3. Use synthetic division to find roots. 4. Continue to factor until you have linear factors. 5. Use Fundamental Theorem to find the remaining roots. Ex. 1. What are the roots of the equation $x^0 + 2x^3 = 13x^2 - 10x$? $x^{1} + 2x^{3} - 13x^{2} + 10x$ $x^{1} + 2x^{3} - 13x^{2} + 10x$ $x^{2} + 3x - 10$ $x^{2} + 3$
Linear Factors	Ex 3. Find all the zeros of the function by factoring completely, into a product of linear factors. $f(x) = x^{4/2} 2x^3 - x^2 + 2x$ $ \chi(\chi^3 - 2\chi) - \chi(\chi^{-2}) - \chi(\chi^{-2}) $ $ \chi(\chi^2(\chi^{-2}) - \chi(\chi^{-2})) $
	$X(X^{2}-1)(X-2)$ X(X+1)(X-2)

