Topic 1: Congruent Figures

1. Write three different, valid congruency statements for the given triangles.

- **2.** If $\Delta KPL \cong \Delta ACM$, complete each part.

a) $\overline{KL} \cong$ d) $\angle P \cong$

b) $\overline{AC} \cong$ e) $\angle K \cong$

c) $\overline{PL} \cong \underline{\hspace{1cm}}$ f) $\angle M \cong \underline{\hspace{1cm}}$

3. If $\Delta WXY \cong \Delta HJI$, complete each part.

- a) $JI = ____$
- **b)** $JH = ____$
- c) $m \angle W = _$
- **d)** $m \angle J = _____$
- e) $m \angle I =$

Topic 2: Triangle Congruence and Proofs

- **4.** What are the different methods (shortcuts) used to prove that triangles are congruent?
- 5. Determine if the triangles below are congruent. If yes, state by which method (shortcut). Explain what marks you can add to the diagram and why.

a)

b)

c)

Complete the following proofs. Some may require CPCTC.

6. Given: Q is the midpoint of \overline{PT} and \overline{RS} Prove: $\Delta PQR \cong \Delta TQS$

<u>Statements</u>	<u>Reasons</u>
1. Q is the midpoint of \overline{PT} and \overline{RS}	1.
$2.\overline{PQ} \cong \overline{TQ}$	2.
$3. \overline{RQ} \cong \overline{SQ}$	3.
$4.\angle RQP \cong \angle SQT$	4.
$5. \Delta PQR \cong \Delta TQS$	5.

7. Given: $\overline{XZ} \perp \overline{WY}$, $\overline{WX} \cong \overline{YX}$ **Prove:** $\Delta WXZ \cong \Delta YXZ$

<u>Statements</u>	<u>Reasons</u>
$1.\overline{XZ} \perp \overline{WY}$	1.
2.∠XZW and ∠XZY are right angles	2.
$3. \angle XZW \cong \angle XZY$	3.
$4. \overline{WX} \cong \overline{YX}$	4.
$5.\overline{XZ}\cong\overline{XZ}$	5.
$6. \Delta WXZ \cong \Delta YXZ$	6.

8. Given: $\overline{BC} \parallel \overline{AD}$, $\angle BAD \cong \angle DCB$

Prove: $\overline{AB} \cong \overline{CD}$

<u>Statements</u>	<u>Reasons</u>
$1.\overline{BC} \parallel \overline{AD}$	1.
$2.\angle CBD \cong \angle ADB$	2.
$3. \angle BAD \cong \angle DCB$	3.
$4. \overline{BD} \cong \overline{DB}$	4.
$5. \Delta BDA \cong \Delta DBC$	5.
$6. \overline{AB} \cong \overline{CD}$	6.

9.

For questions 9-12, find each missing measure.

 $m \angle Q = \underline{\hspace{1cm}}$

m∠*R* =____

m∠*E* =____

$$m \angle G = \underline{\hspace{1cm}}$$

11.

$$m \angle A = \underline{\hspace{1cm}}$$

 $AC = \underline{\hspace{1cm}}$

12.

m∠*M* =_____

For questions 13 and 14, find the value of x.

13.

x =____

15. $\triangle CDE$ is an isosceles triangle with $\angle D \cong \angle E$. If CD = 4x + 9, DE = 7x - 5, and CE = 16x - 27, find x and the measure of each side.

x =____

$$CD =$$

$$DE =$$

$$CE =$$

16.

x =____

17.

x=____