Lesson 4-1 and 4-2

Graph each function on graph paper.

1. $y=(x+1)^{2}-3$
2. $y=(x+3)^{2}+1$
3. $y=2 x^{2}+4$
4. $y=x^{2}+2 x-3$

Identify the vertex, axis of symmetry, minimum or maximum value, y-intercept, and domain and range of each function.
5. $y=-\frac{1}{2}(x-4)^{2}-10$
6. $f(x)=x^{2}-4 x+5$
7. Marnie throws a softball straight up into the air. The ball leaves her hand when it is exactly 5 ft from the ground. The height h of the ball, in feet, can be written as a function of time t, in seconds, as $h=-16 t^{2}+40 t+5$.
a. What is the maximum height the ball reaches?
b. Marnie catches the ball 5 ft from the ground. How long was the ball in the air?

Lesson 4-4

Factor each expression.
8. $x^{2}+3 x-54$
9. $4 x^{2}-5 x-9$
10. $x^{2}-36$
12. $5 x^{2}+23 x-10$
13. $4 x^{2}+12 x+40$

Lesson 4-5

Solve the following using square roots.
14. $4 x^{2}-100=0$
15. $x^{2}-30=10$

Solve the following by factoring.

16. $x^{2}+3 x+2=0$
17. $x^{2}=-2 x+1$
18. $2 x^{2}+3 x-2=0$
19. $6 x^{2}+x-1=0$

Solve the following using a calculator. Round to the nearest thousandth.
20. $x^{2}+4 x-1=0$
21. $2 x^{2}+4 x=70$
22. Solve the following using a calculator. The expression $P(x)=2500 x-2 x^{2}$ describes the profit of a company that customizes bulldozers when it customizes x bulldozers in a month.
a. How many bulldozers per month must the company customize to make the maximum possible profit? What is the maximum profit?
b. For what number of bulldozers per month is the profit at least $\$ 750,000$?

Lessons 4-6 and 4-7

Solve the following by completing the square.
23. $x^{2}+4 x+4=0$
24. $x^{2}+8 x-17=0$
25. $2 x^{2}-12 x+1=0$
26. $3 x^{2}+12 x-6=0$

Rewrite the following functions in vertex form by completing the square.
27. $y=x^{2}-2 x+5$
28. $y=x^{2}+4 x-1$

Solve the following using the quadratic formula.
29. $x^{2}+5 x+8=4$
30. $x^{2}-3 x+7=0$

Evaluate the discriminant of each equation. Tell how many real solutions each equation has.
31. $x^{2}+4 x=17$
32. $2 x^{2}+x=-1$
33. Use a calculator to solve. An archer's arrow follows a parabolic path. The path of the arrow can be described by the equation $y=-0.005 x^{2}+2 x+5$.
a. Describe the meaning of the y-intercept of the graph of the equation.
b. What is the horizontal distance the arrow travels before it hits the ground? Round your answer to the nearest foot.

Lesson 4-8

Simplify each number by using the imaginary number i.
34. $\sqrt{-9}$
35. $\sqrt{-175}$
36. $\sqrt{-80}$

Simplify each expression.
37. $\frac{3+i}{5-2 i}$
38. $(4+2 i)(1-i)$
39. $(4+2 i)-(3+5 i)$
40. $(2-5 i)^{2}$

