Isosceles Triangles

Parts of Isosceles Triangle:

- The two congruent sides are called the $\frac{160 \text{ S}}{1}$
- The angle where the sides intersect is called the Vertex
- The sides opposite the vertex angle is called the
- The angles along the base are called the base angles

Isosceles Triangle Theorem

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

then < A =< c Example: 1

Converse of Isosceles Triangle Theorem

If two angles of a triangle are congruent, then the sides opposite those angles are congruent.

Example: If <A =<C, then AB =BC

Directions: Find each missing angle measure.

1.

Directions: Find the value of each variable.

4.

5x+9=8x -30

 $(5x + 9)^{\circ}$ $(8x - 30)^{\circ}$

15x + 7

23x - 17

$$4x+40=9x$$

 $-4x$
 $40=5x$

6.

7.

8. In $\triangle RST$, if $\overline{RT} \cong \overline{ST}$, $m \angle R = 9x + 2$, $m \angle S = 13x - 18$, and $m \angle T = 17x + 1$, find x and the measure of each angle.

$$9x+2=13x-18$$
 $+13$
 $+13$
 $+13$
 $+13$
 $+13$
 $+13$

$$x = 5$$

$$m \angle R = 47^{\circ}$$

$$m \angle S = \frac{47^{\circ}}{100}$$

$$m \ge T = \frac{\chi_0}{\chi_0}$$

9. In $\triangle DEF$, if $\angle D \cong \angle E$, DE = x + 4, EF = 4x - 8, and DF = 7x - 35, find x and the measure of each angle.

$$7x-35=4x-8$$
$$3x=27$$

Equilateral Triangles

A triangle is equilateral if and only if it is equiangular!

- If $m \angle A = m \angle B = m \angle C$, then AB = BC = AC
- If AB = BC = AC, then M < A = M < B = M < C

11.

Directions: Find each missing measure.

$$m\angle C = \underbrace{00^{\circ}}_{BC}$$

$$BC = \underbrace{0}_{CC}$$

$$AC = \frac{9}{9}$$

24 cm

12. If ΔPQR is an equilateral triangle, solve for x and y.

